
Creating an Emulator for Turbo Graphx Systems

A Handy Guide

Version 0.2

Warren Wilkinson
wagwilk@telusplanet.net

April 30, 2005

Abstract

This document is to serve as a reference for emulator writers desiring to create an emulator
for the Turbo Graphx line of consoles (also commonly refered to as the PC-Engine line of
consoles). System hardware, the instructions set, component parts, and their interactions
are discussed at length. Software concerns relating to the creation of an PCE emulator are
discussed in the second part of the document.

Contents

1 Introduction 2

2 Hardware 3
2.1 HuC6280 . 3

2.1.1 Registers . 3
2.1.2 MMU . 5
2.1.3 Bank Maps . 6
2.1.4 Timer . 7
2.1.5 Gamepad IO Port . 8
2.1.6 Interrupts . 9

2.2 Huc6280 Instructions . 10
2.2.1 Exhaustive Index of Instructions . 11
2.2.2 Branching Instructions . 15
2.2.3 Clear Instructions . 23
2.2.4 Compare Instructions . 25
2.2.5 Speed Instructions . 27
2.2.6 Decrement Instructions . 28
2.2.7 Increment Instructions . 29
2.2.8 Jump Instructions . 31
2.2.9 Load Instructions . 31
2.2.10 Push and Pull Instructions . 34
2.2.11 Return Instructions . 38
2.2.12 Swap Instructions . 39
2.2.13 Set Instructions . 40
2.2.14 Store HuC6270 functions (STi) . 42
2.2.15 Block Transfer Functions . 46
2.2.16 Addressing Modes . 54

1

3 Emulator Design 56
3.1 Programming Language . 56
3.2 Programming Philosophy . 57
3.3 Software Components . 58

3.3.1 Debugger Components . 58
3.3.2 Video Components . 59
3.3.3 Audio Components . 59
3.3.4 Input Components . 59

4 Appendix 61
4.1 Changes . 61
4.2 Remaining To Do . 61
4.3 Ordered List of Instructions . 62

Glossary 63

Index 63

References 65

List of Tables

1 Status Register Bits . 3
2 Logical Memory range per page . 5
3 Division of Address Pointers . 5
4 Bank Maps . 6
5 Default Bank Mappings . 6
6 Timer Counter Register . 7
7 Timer Countrol Register . 7
8 Gamepad I/O port . 8
9 Interrupt disable register . 9
10 Interrupt status register . 9

1 Introduction

This document is a work in progress. There are a number of things I don’t know about the PCE
family of game consoles; I only had the barebones Turbo Graphics 16. However I would like to
support the entire family of consoles with one emulator, so any information about any of the
systems is appreciated.

If you’d like to submit feedback, questions or comments email them me here: wagwilktelus-
planet.net, Put OpenPCE in the subject line (so my spam filter doesn’t eat your message).

2

Table 1: Status Register Bits
Bit Number 7 6 5 4 3 2 1 0

S V B D I Z C

2 Description of Hardware

2.1 Main Processor (HuC6280)

The HuC6280 is an 8-bit microprocessor. Apparently it is similar in design to 6502 and 65C02
CPU’s, and contains a 65C02 core with several additional instructions (WHAT ARE THEY?) and
a few internal peripheral functions (SOME ARE: an interrupt controller, a MMU, a TIMER, a
8-bit parallel I/O port, and a PSG. ARE THERE MORE?) [David Michel, 2003]

There will be more descriptions here, probably will need to cite these guys 6502 docs -¿
[Bnu, 1999] and 65C02 docs -¿ [Zophar, 2004].

2.1.1 Registers

ACCUMULATOR:
This is THE most important register in the microprocessor. Various machine language instruc-
tions allow you to copy the contents of a memory location into the accumulator, copy the contents
of the accumulator into a memory location, modify the contents of the accumulator or some other
register directly, without affecting any memory. And the accumulator is the only register that has
instructions for performing math.[Bnu, 1999]

THE X INDEX REGISTER:
This is a very important register. There are instructions for nearly all of the transformations you
can make to the accumulator. But there are other instructions for things that only the X register
can do. Various machine language instructions allow you to copy the contents of a memory loca-
tion into the X register, copy the contents of the X register into a memory location, and modify
the contents of the X, or some other register directly.[Bnu, 1999]

THE Y INDEX REGISTER:
This is a very important register. There are instructions for nearly all of the transformations you
can make to the accumulator, and the X register. But there are other instructions for things that
only the Y register can do. Various machine language instructions allow you to copy the contents
of a memory location into the Y register, copy the contents of the Y register into a memory loca-
tion, and modify the contents of the Y, or some other register directly.[Bnu, 1999]

THE STATUS REGISTER:
This register consists of eight ”flags” (a flag = something that indicates whether something has,
or has not occurred). Bits of this register are altered depending on the result of arithmetic and
logical operations. These bits are described below:
Bit 0 - C - Carry flag: this holds the carry out of the most significant bit in any arithmetic opera-
tion. In subtraction operations however, this flag is cleared - set to 0 - if a borrow is required, set
to 1 - if no borrow is required. The carry flag is also used in shift and rotate logical operations.

Bit 1 - Z - Zero flag: this is set to 1 when any arithmetic or logical operation produces a zero
result, and is set to 0 if the result is non-zero.

Bit 2 - I: this is an interrupt enable/disable flag. If it is set, interrupts are disabled. If it is cleared,
interrupts are enabled.

3

Bit 3 - D: this is the decimal mode status flag. When set, and an Add with Carry or Subtract
with Carry instruction is executed, the source values are treated as valid BCD (Binary Coded
Decimal, eg. 0x00-0x99 = 0-99) numbers. The result generated is also a BCD number.

Bit 4 - B: this is set when a software interrupt (BRK instruction) is executed.

Bit 5: not used. Supposed to be logical 1 at all times. It might also be the ‘T’ bit, if so than
its used to control whether or not a few instructions affect a memory location rather than the
accumulator. [Robinson, 2005]

Bit 6 - V - Overflow flag: when an arithmetic operation produces a result too large to be repre-
sented in a byte, V is set.

Bit 7 - S - Sign flag: this is set if the result of an operation is negative, cleared if positive.

The most commonly used flags are C, Z, V, S.[Bnu, 1999]

THE PROGRAM COUNTER:
This contains the address of the current machine language instruction being executed. Since
the operating system is always ”RUN”ning in the Commodore VIC-20 (or, for that matter, any
computer), the program counter is always changing. It could only be stopped by halting the
microprocessor in some way.[Bnu, 1999]

THE STACK POINTER
This register contains the location of the first empty place on the stack. The stack is used for
temporary storage by machine language pro-grams, and by the computer.[Bnu, 1999]

4

2.1.2 Memory Management

The HuC6280 has a 64 KB logical address space and a 2 MB physical address space. To access
this entire memory space, the HuC6280 uses a MMU (Memory Managment Unit) that splits the
memory space in segment of 8 KB1. The logical address space is splitted as follow :

Table 2: Logical Memory range per page
Page Logical Address Space (hex) Base Register
0 0x0000 - 0x1FFF MPR0
1 0x2000 - 0x3FFF MPR1
2 0x4000 - 0x5FFF MPR2
3 0x6000 - 0x7FFF MPR3
4 0x8000 - 0x9FFF MPR4
5 0xA000 - 0xBFFF MPR5
6 0xC000 - 0xDFFF MPR6
7 0xE000 - 0xFFFF MPR7

Each logical 8 KB segment (or page) is associated to a 8-bit register (MPR0-7) that contains
the index of the 8 KB segment (or bank) in physical memory to map in this page. Two special
instructions are used to access these registers :

TAMi, transfer the content of the accumulator (A) into a MPR register (0 - 7).
TMAi, transfer a MPR register into the accumulator.[David Michel, 2003]

Table 3: Division of Address Pointers
Page Number Page Offset

3 bits 13 bits

MORE INFORMATION IN THE MEMORY MAPPING DOCUMENT SHOULD BE PUT
HERE.

18K can be represented by 13 bits

5

2.1.3 Bank Maps

Table 4: Bank Maps
Address Description
0x00-0x7F ROM

0xF7 battery backed RAM
0xF8 work RAM
0xFF hardware I/O page

You are free to map banks anywhere into the 8 pages, but a sort of standard has been defined,
all the games seem to use it, so it was used in all the MagicKit’s tools too. Here’s how banks are
mapped by default :

Table 5: Default Bank Mappings
Page Logical Address Space (hex)
0 Bank 0xFF (I/O)
1 Bank 0xF8 (ram)
2
3
4 User Defined
5
6
7 Bank 0x00 (rom)

Note: After a reset, Bank 0x00 (rom) is automatically mapped into page 7.[David Michel, 2003]

6

2.1.4 Timer

The TIMER base frequency is 6.992 KHz.

Table 6: Timer Counter Register
Address Read/Write Bits, Purpose
0x0C00 R/W bit 7: (unused)

bit 6-0: 7-bit down counter

Table 7: Timer Countrol Register
Address Read/Write Bits, Purpose
0x0C01 /W bit 7-1: (unused)

bit 0: start/stop (0 = off, 1 = on)

Note: Addresses are only valid when I/O bank is mapped to page 0 (which is standard)
An interrupt is raised when the counter generates a carry, in other words, when the counter is

to be decremented and its value is zero.[David Michel, 2003]

7

2.1.5 Gamepad IO Port

The Turbo Graphics featured a single IO port for a gamepad. The multitap extention (discussed
in its own section) allows for multiple gamepads to be used with the system.

Table 8: Gamepad I/O port[David Michel, 2003]
Address Read/Write Bits, Purpose
0x1000 /W bit 7-2: (unused)

bit 1: Gamepad CLR Line
bit 0: Gamepad SEL Line

0x1000 R bit 7: (unused)
bit 6: country (1 = JPN, 0 = USA)

bit 5-4: (unused)
bit 3-0: gamepad 4-bit data

Note: Addresses are only valid when I/O bank is mapped to page 0 (which is standard)
The gamepad is read in two stages to determine the condition of all the gamepad inputs. More

information is in the gamepad section.
John Robinson mentions another bit is used if a CD-ROM is present.

gameport status register is missing at least one item. if the cd-rom is present one of the bits is toggled. i think it’s bit 7 but i’ll have to check when i get home.

[Robinson, 2005]

8

2.1.6 Interrupts

Table 9: Interrupt disable register
Address Read/Write Bits, Purpose
0x1402 R/W bit 7-3: (unused)

bit 2: Timer
bit 1: IRQ1 (VDC)
bit 0: IRQ2 (external)

Note: Writing 1 to a bit disables its corrisponding interrupt, writing a 0 to a bit enables its
corrisponding interrupt. Addresses are only valid when I/O bank is mapped to page 0 (which is
standard)

Table 10: Interrupt status register
Address Read/Write Bits, Purpose
0x1403 R bit 7-3: (unused)

bit 2: Timer
bit 1: IRQ1 (VDC)
bit 0: IRQ2 (external)

Note: A write to the Interrupt Status Register (table 10) acknowledges the internal timer
interrupt. If you don’t write to this register at the end of the timer interupt handler you will
get infinite timer interrupts. table Addresses are only valid when I/O bank is mapped to page 0
(which is standard) [David Michel, 2003]

John Robinson mentions:

IRQ2 is shared between the external source (CDROM) and the BRK instruction. it pushes the address + 2 onto the stack for some unknown reason. it’s assumed that this was so that programmers could use the extra byte sort of as an ID. when debugging or whatever, they could check this value (through a bit of work) and use it to do different operations. generally i think there’s generally a NOP after it. i don’t think i’ve run into a game where it’s actually used. usually when it occurs, there’s a bug in the emulator and it’s jumped into some data pages and is executing data.

[Robinson, 2005]

9

2.2 Huc6280 Instructions

I’d like to thank Bnu[Bnu, 1999] and Jens Ch. Restemeier[Restemeier, 1997] for their documen-
tation on the 6502 and HuC6280 CPU’s respectively. Much of this information is copied verbatim,
especially from Restemeier’s spectacular documentation. In fact, the great majority of this in-
formation is copied and pasted right out of Jens’ html documentation without his permission –
I haven’t been able to contact Mr. Restemeier to ask if I may recopy his instruction set, so I’m
hoping he will contact me (wagwilk@telusplanet.net).

How to Read Instructions:

For each instruction listed, a terse description of the function will be given, as well as a table
of addressing modes, and a table listing the operations effects on the status flag. The definition
should be easily read and understood so I’ll proceed to explaining how the tables work, using the
ADC (add with carry) command as an example:

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Immediate ADC #Oper 0x69 2 2
Zero Page ADC Oper 0x65 2 3
Zero Page,X ADC Oper,X 0x75 2 4
Absolute ADC Oper 0x6D 3 4
Absolute,X ADC Oper,X 0x7D 3 4*
Absolute,Y ADC Oper,Y 0x79 3 4*
Indirect ADC (ZZ) 0x72 2 7
(Indirect,X) ADC (Oper,X) 0x61 2 6
(Indirect),Y ADC (Oper),Y 0x71 2 5*

The table shows all the possible addressing modes for the command. For each command it
gives the Addressing Mode, which have been described previously, the syntax that is supported by
mainstream PCE assemblers (note that Oper means the operand, or argument to the operation),
the listed Opcode is the numeric value of the instruction (given as a hex value, so 0x69 = 105
decimal), the number of bytes the instruction takes (in the case of immediate mode, 2, one byte
for the instruction opcode and one more for the instruction operand), and finally the number of
cpu cycles taken by the original hardware to execute the function.

Besides the addressing table, another table is given which shows how a command effects status
flags:

Status Flags
N V T B D I Z C
? ? 0 - - - ? ?

The status register has been discussed previously, it is sufficient to know that:
- means that this flag will not be changed.
? means that this flag will be changed as appropriate for its function.
0 means that this flag will be set low.
1 means that this flag will be set high.

10

2.2.1 Exhaustive Index of Instructions

1 ADC Add Memory to Accumulator with carry 13
2 AND “AND” Memory with Accumulator 14
3 ASL Arithmetic Shift Left . 15
4 BBRi Branch on Bit Reset . 16
5 BBSi Branch on Bit Set . 16
6 BCC Branch on Carry Clear . 17
7 BCS Branch on Carry Set . 17
8 BEQ Branch on Equal . 18
9 BIT Test memory Bits again Accumulator 19
10 BMI Branch on MInus . 19
11 BNE Branch on Not Equal . 20
12 BPL Branch on PLus . 20
13 BRK Force Break . 21
14 BSR Branch to SubRoutine . 22
15 BVC Branch on overflow Clear . 22
16 BVS Branch on overflow Set . 23
17 CLA CLear Accumulator . 23
18 CLC CLear Carry flag . 23
19 CLD CLear Decimal flag . 24
20 CLI CLear Interrupt flag . 24
21 CLV CLear oVerflow flag . 24
22 CLY CLear Y register . 25
23 CLX CLear X register . 25
24 CMP Compare Memory and Accumulator 26
25 CPX Compare Memory and Index X . 26
26 CPY Compare Memory and Index Y . 27
27 CSH Change Speed High . 27
28 CSL Change Speed Low . 28
29 DEC Decrement Memory . 28
30 DEX Decrement X . 28
31 DEY Decrement Y . 29
32 EOR Exclusive-OR memory with accumulator 29
33 INC INCrement memory by one . 30
34 INX INcrement X by one . 30
35 INY INcrement Y by one . 30
36 JMP JuMP to new location . 31
37 JSR Jump to SubRoutine . 31
38 LDA LoaD Accumulator from memory . 32
39 LDX LoaD index X with memory . 32
40 LDY LoaD index Y with memory . 33
41 LSR Logical Shift Right . 33
42 NOP No OPeration . 34
43 ORA OR memory with Accumulator . 34
44 PHA PusH Accumulator on stack . 35
45 PHP PusH Processor Status on stack . 35
46 PHX PusH X register onto stack . 35
47 PHY PusH Y register onto stack . 36
48 PLA PuLl Accumulator from stack . 36
49 PLP PuLl Processor Status from stack . 36
50 PLX PuLl X register from stack . 37
51 PLY PuLl Y register from stack . 37

11

52 ROL ROtate one bit Left (memory or accumulator) 37
53 ROR ROtate one bit Right (memory or accumulator) 38
54 RTI ReTurn from Interrupt . 38
55 RTS Return from subroutine . 39
56 SAX Swap Accumulator and X register . 39
57 SAY Swap Accumulator and Y register . 39
58 SBC Swap Subtract from accumulator (with borrow) 40
59 SEC Set Carry Flag . 41
60 SED Set Decimal Mode Flag . 41
61 SEI Set interrupt disable flag . 41
62 SET Set T flag . 42
63 ST0 Store HuC6270 No. 0 . 42
64 ST1 Store HuC6270 No. 1 . 43
65 ST2 Store HuC6270 No. 2 . 43
66 SMBi Set Memory Bit i . 44
67 STA STore Accumulator in memory . 44
68 STX STore X register in memory . 45
69 STY STore Y register in memory . 45
70 STZ STore Zero in memory . 46
71 SXY Swap X and Y registers . 46
72 TAI Transfer Alternate Increment . 47
73 TAM Transfer Accumulator to MPRi . 47
74 TAX Transfer Accumulator to X register 48
75 TAY Transfer Accumulator to Y register . 48
76 TDD Transfer Decrement Decrement . 48
77 TIA Transfer Increment Alternate . 49
78 TIN Transfer Increment None . 49
79 TII Transfer Increment Increment . 49
80 TMAi Transfer MPRi to Accumulator . 50
81 TRB Test and Reset Memory Bits Against Accumulator 50
82 TSB Test and Set Memory Bits Against Accumulator 51
83 TST Test and Reset Memory Bits . 51
84 TSX Transfer stack pointer to X register . 52
85 TXA Transfer X register to accumulator . 52
86 TXS Transfer X register to Stack Pointer 52
87 TYA Transfer Y register to accumulator . 53

12

ADC Add Memory to Accumulator with carry

Function
Add the data located at the effective address specified by the operand to the set

of contents of the accumulator. If the carry bit was set, then add an additional 1
before storing the result in the accumulator. This instruction takes one extra cycle
to complete if the decimal mode flag is set.

For the entries with a asterix, add one to the value if a page boundary is crossed.
Note that there is some disagreement on whether or not this page boundary makes
any actual difference.
John Robinson mentions:

ADC and SBC have decimal versions when the Decimal flag is set.
This operates on the idea that the numbers are BCD numbers. This
also affects the way flags are set. One flag isn’t set in the BCD way, and
then they set some flags only when the result is a normal BCD number
or something.

[Robinson, 2005], edited by the author

The decimal mode versions of ADC and SBC do not change the state of the
overflow flag.[MacDonald, 2002]

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Immediate ADC #Oper 0x69 2 2
Zero Page ADC Oper 0x65 2 3
Zero Page,X ADC Oper,X 0x75 2 4
Absolute ADC Oper 0x6D 3 4
Absolute,X ADC Oper,X 0x7D 3 4*
Absolute,Y ADC Oper,Y 0x79 3 4*
Indirect ADC (ZZ) 0x72 2 7
(Indirect,X) ADC (Oper,X) 0x61 2 6
(Indirect),Y ADC (Oper),Y 0x71 2 5*

Status Flags
N V T B D I Z C
? ? 0 - - - ? ?

13

AND “AND” Memory with Accumulator

Function
bitwise logical AND the data located at the effective address specified by the

operand with the contents of the accumulator. Each bit in the accumulator is
AND’ed with the corresponding bit in memory, with the result being stored in the
respective accumulator bit.

For the entries with a asterix, add one to the value if a page boundary is crossed.
Note that there is some disagreement on whether or not this page boundary makes
any actual difference.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Immediate AND #Oper 0x29 2 2
Zero Page AND Oper 0x25 2 4a

Zero Page,X AND Oper,X 0x35 2 4
Absolute AND Oper 0x2D 3 5b

Absolute,X AND Oper,X 0x3D 3 4*
Absolute,Y AND Oper,Y 0x39 3 4*
Indirectc AND (Oper) 0x32 2 7
(Indirect,X) AND (Oper,X) 0x21 2 7d

(Indirect,Y) AND (Oper),Y 0x31 2 7e

Status Flags
N V T B D I Z C
? - 0 - - - ? -

a Bnu’s documentation says 3 for this value
b Bnu’s documentation says 4 for this value
cNot in Bnu’s documentation
d Bnu’s documentation says 6 for this value
e Bnu’s documentation says 5 for this value

14

ASL Arithmetic Shift Left

Function
Shift the contents of the location specified by the operand left one bit. That

is, bit one takes on the value originally found in bit zero, bit two takes the value
originally in bit one, and so on; bit 7 is transferred into the carry flag; bit 0 is
cleared. The arithmetic result of the operation is an unsigned multiplication by
two.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Accumulator ASL A 0x0A 1 2
Zero Page ASL Oper 0x06 2 6a

Zero Page,X ASL Oper,X 0x16 2 6
Absolute ASL Oper 0x0E 3 7b

Absolute,X ASL Oper,X 0x1E 3 7

Status Flags
N V T B D I Z C
? - 0 - - - ? ?

a Bnu’s documentation says 5 for this value
b Bnu’s documentation says 6 for this value

2.2.2 Branching Instructions

A branch instruction that crosses a 256-byte or 8192-byte boundary does not take any additional
cycles.[MacDonald, 2002]

15

BBRi Branch on Bit Reset

Function
The ith bit value in zero page memory location Oper is tested. If it is clear

a branch is taken; if it is set, the instruction immediately following the three byte
BBRi instruction is executed. If the branch is taken, a one-byte signed displace-
ment (dd), fetched from the third byte of the instruction is added to the program
counter. Once the branch address has been calculated, the result is loaded into the
program counter, transferring control to that location. The allowable range of the
displacement is -128 to +127 from the instruction immediately following the branch.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Zero Page, Relative BBR0 zz, dd 0x0F 3 6
Zero Page, Relative BBR1 zz, dd 0x1F 3 6
Zero Page, Relative BBR2 zz, dd 0x2F 3 6
Zero Page, Relative BBR3 zz, dd 0x3F 3 6
Zero Page, Relative BBR4 zz, dd 0x4F 3 6
Zero Page, Relative BBR5 zz, dd 0x5F 3 6
Zero Page, Relative BBR6 zz, dd 0x6F 3 6
Zero Page, Relative BBR7 zz, dd 0x7F 3 6

Status Flags
N V T B D I Z C
- - 0 - - - - -

BBSi Branch on Bit Set

Function
The ith bit value in zero page memory location Oper is tested. If it is set a

branch is taken; if it is clear, the instruction immediately following the three byte
BBSi instruction is executed. If the branch is taken, a one-byte signed displace-
ment (dd), fetched from the third byte of the instruction is added to the program
counter. Once the branch address has been calculated, the result is loaded into the
program counter, transferring control to that location. The allowable range of the
displacement is -128 to +127 from the instruction immediately following the branch.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Zero Page, Relative BBS0 zz, dd 0x8F 3 6
Zero Page, Relative BBS1 zz, dd 0x9F 3 6
Zero Page, Relative BBS2 zz, dd 0xAF 3 6
Zero Page, Relative BBS3 zz, dd 0xBF 3 6
Zero Page, Relative BBS4 zz, dd 0xCF 3 6
Zero Page, Relative BBS5 zz, dd 0xDF 3 6
Zero Page, Relative BBS6 zz, dd 0xEF 3 6
Zero Page, Relative BBS7 zz, dd 0xFF 3 6

Status Flags
N V T B D I Z C
- - 0 - - - - -

16

BCC Branch on Carry Clear

Function
The carry flag in the status register is tested. If it is clear, a branch is taken;

if it is set, the instruction immediately following the two byte BCC instruction is
executed. If the branch is taken, a one byte signed displacement, fetched from
the second byte of the instruction is added to the program counter. Once the
branch address has been calculated, the result is loaded into the program counter,
transferring execution to that location. The allowable displacement range is -128
to +127 from the instruction immediately following the branch.

Note that BCC determines if the result of a comparison is less than; therefore,
BCC is sometimes written as BLT (Branch Less Than). This opcode takes one
extra cycle if the the branch is taken, and another extra cycle if a page boundary
is crossed in taking the branch.

There is some dispute as to whether branching to another page actually incurs
a greater penalty than branching onto the same memory page. Charles McDonald’s
document claims that there are no penalties to branching to different pages.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Relative BCC hl 0x90 2 2

Status Flags
N V T B D I Z C
- - 0 - - - - -

BCS Branch on Carry Set

Function
The carry flag in the status register is tested. If it is set, a branch is taken;

if it is clear, the instruction immediately following the two byte BCS instruction
is executed. If the branch is taken, a one byte signed displacement, fetched from
the second byte of the instruction is added to the program counter. Once the
branch address has been calculated, the result is loaded into the program counter,
transferring execution to that location. The allowable displacement range is -128
to +127 from the instruction immediately following the branch.

Note that BCS determines if the result of a comparison is greater or equal than;
therefore, BCS is sometimes written as BGE (Branch Greater than or Equal). This
opcode takes one extra cycle if the the branch is taken, and another extra cycle if
a page boundary is crossed in taking the branch.

There is some dispute as to whether branching to another page actually incurs
a greater penalty than branching onto the same memory page. Charles McDonald’s
document claims that there are no penalties to branching to different pages.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Relative BCS hl 0xB0 2 2

Status Flags
N V T B D I Z C
- - 0 - - - - -

17

BEQ Branch on Equal

Function
The zero flag in the status register is tested. If it is set, a branch is taken;

if it is clear, the instruction immediately following the two byte BEQ instruction
is executed. If the branch is taken, a one byte signed displacement, fetched from
the second byte of the instruction is added to the program counter. Once the
branch address has been calculated, the result is loaded into the program counter,
transferring execution to that location. The allowable displacement range is -128
to +127 from the instruction immediately following the branch.

This instruction gets its name for the reason that when two numbers are com-
pared they are logically subtracted to set the status flags (however the result of
this subtraction is not stored). If they are the same number the result will be zero,
and thus the zero flag will be set. So by checking the zero flag in BEQ command,
we are in effect checking to see that the two numbers were equal in the previous
comparison.

Note that BCS determines if the result of a comparison is greater or equal than;
therefore, BCS is sometimes written as BGE (Branch Greater than or Equal). This
opcode takes one extra cycle if the the branch is taken, and another extra cycle if
a page boundary is crossed in taking the branch.

There is some dispute as to whether branching to another page actually incurs
a greater penalty than branching onto the same memory page. Charles McDonald’s
document claims that there are no penalties to branching to different pages.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Relative BEQ hl 0xF0 2 2

Status Flags
N V T B D I Z C
- - 0 - - - - -

18

BIT Test memory Bits again Accumulator

Function
BIT sets the status flags based on the result of two different operations. First,

it sets or clears the N flag to reflect the value of the high bit (bit 7) of the data
located at the effective address specified by the operand, and sets of clears the V
flag to reflect the contents of the next-to-highest bit (bit 6) of the data addressed.
Second it logically ANDs the data located at the effective address with the contents
of the accumulator; it changes neither value, but sets the Z flag if the result is zero,
or clears it if it is non-zero.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Immediate BIT #nn 0x89 nn 2 2
Zero Page BIT ZZ 0x24 ZZ 2 4a

Zero Page,Xa BIT ZZ,X 0x34 ZZ 2 4
Absolute BIT hh ll 0x2C ll hh 3 4b

Absolute,Xa BIT hh ll,X 0x34 ll hh 3 5

Status Flags
N V T B D I Z C

Mem7 Mem6 0 - - - ? -

aWas 3 in Bnu’s documentation
bwas 5 in Bnu’s documentation

BMI Branch on MInus

Function
The negative flag in the status register is tested. If it is set, meaning the high bit

of the value which most recently affected the N flag was set, a branch is taken. Since
numbers are often stored in two’s complement, this instruction can be used to detect
negative numbers. If it is clear, the instruction immediately following the two-byte
BMI instruction is executed. If the branch is taken, a one-byte displacement, fetched
from the third byte of the instruction, is added to the program counter. Once the
branch address has been calculated, the result is loaded into the program counter,
transferring code to that location. The allowable range of the displacement is -128
to +127 from the instruction immediately following the branch.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Relative BMI hhll 0x30 rr 2 2

Status Flags
N V T B D I Z C
- - 0 - - - - -

19

BNE Branch on Not Equal

Function
The zero flag in the status register is tested. If it is clear, meaning the last

value tested (which affected the zero flag) was zero, a branch is taken; if it is
set, meaning the value tested was non-zero, the instruction immediately following
the two-byte BNE instruction is executed. If the branch is taken, a one-byte dis-
placement, fetched from the third byte of the instruction, is added to the program
counter. Once the branch address has been calculated, the result is loaded into
the program counter, transferring code to that location. The allowable range of the
displacement is -128 to +127 from the instruction immediately following the branch.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Relative BNE hhll 0xD0 rr 2 2

Status Flags
N V T B D I Z C
- - 0 - - - - -

BPL Branch on PLus

Function
The negative flag in the status register is tested. If it is clear, meaning the high

bit of the value which recently affected the N flag was cleared, a branch is taken;
if it is set, the instruction immediately following the two-byte BPL instruction is
executed. If the branch is taken, a one-byte displacement, fetched from the third
byte of the instruction, is added to the program counter. Once the branch address
has been calculated, the result is loaded into the program counter, transferring code
to that location. The allowable range of the displacement is -128 to +127 from the
instruction immediately following the branch.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Relative BPL hhll 0x10 rr 2 2

Status Flags
N V T B D I Z C
- - 0 - - - - -

20

BRK Force Break

Function
Forces a software interrupt. BRK is unaffected by the I interrupt disable flag.

Although BRK is a one-byte instruction, the program counter (which is pushed
onto the stack by the instruction) is incremented by two; this lets you follow the
break instruction with a one-byte signature byte indicating which break caused
the interrupt. Be sure to pad BRK with a single byte to allow an RTI (return
from interrupt) instruction to execute correctly. Multiple actions are invoked on a
BRK. The program counter is incremented by 2. The high and low bytes of the
program counter are pushed onto the stack in order, followed by the status register
(P). The program counter is then loaded with the break vector stored at absolute
address $00FFF6-$00FFF7. (Remember, the high byte is stored in $00FFF7 and
the low byte is stored in $00FFF6.) The decimal flag D is cleared, and the I flag
is set (to disable hardware IRQ interrupts) after a break is executed. Additionally,
the break flag B in the status register value pushed onto the stack is set.

John Robinson mentions:

The break flag is modified when this instruction is hit; how exactly
it’s modified depends upon whose document you read. Most emulators
assume that the BRK flag is always 0 until the BRK instruction is
executed, then it’s set to 1. Charles McDonald’s [document] says it’s
always set to 1 except after the BRK instruction. I don’t think this
matters because no game I know of actually hits the BRK instruction
and I don’t think any check the status of it’s flag. I follow Charle’s way,
as his document has been the most up to date on all information, that
i’ve seen.

[Robinson, 2005], edited by the author

pushes the return address plus one to the stack; the next byte after the BRK
instruction is always skipped.[MacDonald, 2002]

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied BRK 0x00 1 8 a

Status Flags
N V T B D I Z C
- - 0 1 0 1 - -

a Bnu’s documentation says 7 for this value

21

BSR Branch to SubRoutine

Function
Similar to the Jump to Subroutine (JSR) instruction, Branch to Subroutine

allows execution of a subroutine. However, the offset is specified in relative mode
instead of as an absolute address. This saves a byte, but takes one more clock
cycle than JSR, so its use is discouraged. The current program counter is pushed
onto the stack. A one-byte signed displacement, fetched from the second byte of
the instruction, is added to the program counter. Once the subroutine address has
been calculated, the result is loaded into the program counter, transferring control
to that location. The allowable range of the displacement is -128 to +127 from the
instruction immediately following the BSR . This opcode takes one extra cycle if a
page boundary is crossed in calling the subroutine.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Relative BSR hhll 0x44 rr 2 8

Status Flags
N V T B D I Z C
- - 0 - - - - -

BVC Branch on overflow Clear

Function
The overflow flag V in the status register is tested. If it is clear, a branch is

taken; if it is set, the instruction immediately following the two-byte BVC instruc-
tion is executed. If the branch is taken, a one-byte signed displacement, fetched
from the third byte of the instruction, is added to the program counter. Once the
branch address has been calculated, the result is loaded into the program counter,
transferring control to that location. The allowable range of the displacement is
-128 to +127 from the instruction immediately following the branch.

BVC is almost exclusively used to check that a two’s complement arithmetic
calculation has not overflowed.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Relative BVC hhll 0x50 rr 2 2

Status Flags
N V T B D I Z C
- - 0 - - - - -

22

BVS Branch on overflow Set

Function
The overflow flag V in the status register is tested. If it is set, a branch is taken;

if it is clear, the instruction immediately following the two-byte BVS instruction is
executed. If the branch is taken, a one-byte signed displacement, fetched from the
third byte of the instruction, is added to the program counter. Once the branch
address has been calculated, the result is loaded into the program counter, trans-
ferring control to that location. The allowable range of the displacement is -128 to
+127 from the instruction immediately following the branch.

BVS is almost exclusively used to check that a two’s complement arithmetic
calculation has overflowed.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Relative BVS hhll 0x70 rr 2 2

Status Flags
N V T B D I Z C
- - 0 - - - - -

2.2.3 Clear Instructions

CLA CLear Accumulator

Function
The Accumulator is set to 0x00.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied CLA 0x62 1 2

Status Flags
N V T B D I Z C
- - 0 - - - - -

CLC CLear Carry flag

Function
The Clear flag in the status register is set to 0.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied CLC 0x18 1 2

Status Flags
N V T B D I Z C
- - 0 - - - - 0

23

CLD CLear Decimal flag

Function
The Decimal flag in the status register is set to 0.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied CLD 0xD8 1 2

Status Flags
N V T B D I Z C
- - 0 - 0 - - -

CLI CLear Interrupt flag

Function
The Interrupt flag in the status register is set to 0.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied CLI 0x58 1 2

Status Flags
N V T B D I Z C
- - 0 - - 0 - -

CLV CLear oVerflow flag

Function
The overflow flag in the status register is set to 0.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied CLV 0xB8 1 2

Status Flags
N V T B D I Z C
- 0 0 - - - - -

24

CLY CLear Y register

Function
The Y register is set to 0x00.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied CLY 0xC2 1 2

Status Flags
N V T B D I Z C
- - 0 - - - - -

CLX CLear X register

Function
The X register is set to 0x00.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied CLX 0x82 1 2

Status Flags
N V T B D I Z C
- - 0 - - - - -

2.2.4 Compare Instructions

25

CMP Compare Memory and Accumulator

Function
Subtract the data located at the effective address specified by the operand from

the contents of the accumulator, setting the carry, zero, and negative flags based on
the result, but without altering the contents of either the memory location or the
accumulator. The comparison is of unsigned binary values only (decimal mode is
ignored), and the result is not saved.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Immediate CMP #nn 0xC9 nn 2 2
Zero Page CMP ZZ 0xC5 ZZ 2 4 a

Zero Page,X CMP ZZ,X 0xD5 ZZ 2 4
Absolute CMP hhll 0xCD ll hh 3 5b

Absolute,X CMP hhll,X 0xDD ll hh 3 5b

Absolute,Y CMP hhll,Y 0xD9 ll hh 3 5b

Indirect CMP (ZZ) 0xD2 2 7
(Indirect,X) CMP (ZZ,X) 0xC1 ZZ 2 7 c

(Indirect),Y CMP (ZZ),Y 0xD1 ZZ 2 7 d

Status Flags
N V T B D I Z C
? - 0 - - - ? ?

awas 3 in Bnu’s documentation
bwas 4 in Bnu’s documentation
cwas 6 in Bnu’s documentation
dwas 5 in Bnu’s documentation

CPX Compare Memory and Index X

Function
Subtract the data located at the effective address specified by the operand from

the contents of the X register, setting the carry, zero, and negative flags based on
the result, but without altering the contents of either the memory location or the
accumulator. The comparison is of unsigned binary values only (decimal mode is
ignored), and the result is not saved.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Immediate CPX #nn 0xE0 nn 2 2
Zero Page CPX ZZ 0xE4 ZZ 2 4a

Absolute CPX hhll 0xEC ll hh 3 5b

Status Flags
N V T B D I Z C
? - 0 - - - ? ?

awas 3 in Bnu’s documentation
bwas 4 in Bnu’s documentation

26

CPY Compare Memory and Index Y

Function
Subtract the data located at the effective address specified by the operand from

the contents of the Y register, setting the carry, zero, and negative flags based on
the result, but without altering the contents of either the memory location or the
accumulator. The comparison is of unsigned binary values only (decimal mode is
ignored), and the result is not saved.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Immediate CPY #nn 0xC0 nn 2 2
Zero Page CPY ZZ 0xC4 ZZ 2 4a

Absolute CPY hh ll 0xCC ll hh 3 5b

Status Flags
N V T B D I Z C
? - 0 - - - ? ?

awas 3 in Bnu’s documentation
bwas 4 in Bnu’s documentation

2.2.5 Speed Instructions

The CSL and CSH instructions change the CPU’s clock speed. CSL selects low speed mode which
is 1.78 MHz, CSH selects high speed mode which is 7.16 MHz. On power-up the CPU is in low
speed mode.

CSH and CSL take 3 cycles each, but that was tested with the CPU already set to the respective
clock speed. It currently isn’t known if either instruction takes more or less time when switching
between different speeds.[MacDonald, 2002]

CSH Change Speed High

Function
Sets the HuC6280 to “high speed”, or normal speed mode. The only use for

this instruction is after a system reset, to ensure that the processor is in its high
speed mode.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied CSH 0xD4 1 3

Status Flags
N V T B D I Z C
- - 0 - - - - -

27

CSL Change Speed Low

Function
Sets the HuC6280 to low speed. The only use for this instruction appears to

be for the US “country check” code; it does not appear anywhere else in HuC6280
code. Its use is discouraged.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied CSL 0x54 1 3

Status Flags
N V T B D I Z C
- - 0 - - - - -

2.2.6 Decrement Instructions

DEC Decrement Memory

Function
Decrement by one the contents of the location specified by the operand (subtract

one from the value). DEC neither affects nor is affected by the carry flag.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Zero Page DEC ZZ 0xC6 ZZ 2 6a

Zero Page,X DEC ZZ,X 0xD6 ZZ 2 6
Absolute DEC hhll 0xCE ll hh 3 7b

Absolute,X DEC hhll,X 0xDE ll hh 3 7
Accumulator DEC A 0x3A 1 2

Status Flags
N V T B D I Z C
? - 0 - - - ? -

awas 5 in Bnu’s documentation
bwas 6 in Bnu’s documentation

DEX Decrement X

Function
Decrement by one the contents of the X register (subtract one from the value).

DEX neither affects nor is affected by the carry flag.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied DEX 0xCA 1 2

Status Flags
N V T B D I Z C
? - 0 - - - ? -

28

DEY Decrement Y

Function
Decrement by one the contents of the Y register (subtract one from the value).

DEY neither affects nor is affected by the carry flag.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied DEY 0x88 1 2

Status Flags
N V T B D I Z C
? - 0 - - - ? -

EOR Exclusive-OR memory with accumulator

Function
Bitwise logical Exclusive OR (XOR) the data located at the effective address

specified by the operand with the contents of the accumulator. Each bit in the
accumulator is XORed with the corresponding bit in memory, with the result being
stored in the respective accumulator bit.

There is some confusion about the Hex Value for the instruction when it is in
Absolute mode. Bnu’s documentation says 0x40 is EOR in the absolute varient,
and 0x4D is the RTI instruction in implied mode. Jens Restemeier’s instructions
say the opposite: 0x4D is the EOR absolute varient, and 0x40 is the RTI instruction
implied varient.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Immediate EOR #nn 0x49 nn 2 2
Zero Page EOR ZZ 0x45 ZZ 2 4a

Zero Page,X EOR ZZ,X 0x55 ZZ 2 4
Absolute EOR hhll 0x40 ll hh 3 5b

Absolute,X EOR hhll,X 0x5D ll hh 3 5b

Absolute,Y EOR hhll,Y 0x59 ll hh 3 5b

Indirect EOR (ZZ) 0x52 ZZ 2 7
(Indirect,X) EOR (ZZ,X) 0x41 ZZ 2 7c

(Indirect),Y EOR (ZZ),Y 0x51 ZZ 2 7d

Status Flags
N V T B D I Z C
? - 0 - - - ? -

awas 3 in Bnu’s documentation
bwas 4 in Bnu’s documentation
cwas 6 in Bnu’s documentation
dwas 5 in Bnu’s documentation, unless a page boundary was crossed, in which case it was 6

2.2.7 Increment Instructions

29

INC INCrement memory by one

Function
Increments contents of the location specified by the operand (add one to the

value). INC neither affects nor is affected by the carry flag.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Zero Page INC ZZ 0xE6 ZZ 2 6a

Zero Page,X INC ZZ,X 0xF6 ZZ 2 6
Absolute INC hhll 0xEE ll hh 3 7b

Absolute,X INC hhll,X 0xFE ll hh 3 7
Accumulator INC A 0x1A 1 2

Status Flags
N V T B D I Z C
? - 0 - - - ? -

awas 5 in Bnu’s documentation
bwas 6 in Bnu’s documentation

INX INcrement X by one

Function
Increment by one contents of the X register (add one to the value). INX neither

affects nor is affected by the carry flag.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied INX 0xE8 1 2

Status Flags
N V T B D I Z C
? - 0 - - - ? -

INY INcrement Y by one

Function
Increment by one contents of the Y register (add one to the value). INY neither

affects nor is affected by the carry flag.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied INY 0xC8 1 2

Status Flags
N V T B D I Z C
? - 0 - - - ? -

30

2.2.8 Jump Instructions

An indirect JMP instruction with the low byte of the address set to $FF will correctly read the
high byte at the next address, instead of wrapping to address 0 like the 6502 does. (so jmp
[$FEFF] reads the MSB from address $FF00, not $FE00)[MacDonald, 2002]

JMP JuMP to new location

Function
Transfer control to the address specified by the operand field. The program

counter is loaded with the target address.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Absolute JMP hhll 0x4C ll hh 3 4a

Absolute Indirect JMP (hhll) 0x6C ll hh 3 7b

Absolute Indirect X JMP hhll, X 0x7C ll hh 3 7

Status Flags
N V T B D I Z C
- - 0 - - - - -

awas 3 in Bnu’s documentation
bwas 5 in Bnu’s documentation

JSR Jump to SubRoutine

Function
Transfer control to the subroutine at the location specified by the operand, after

first pushing the current program counter value onto the stack as a return address.
The value of the PC which is pushed onto the stack is the location of the last (third)
byte of the JSR instruction, not the address of the next opcode.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Absolute JSR hh ll 0x20 ll hh 3 7a

Status Flags
N V T B D I Z C
- - 0 - - - - -

awas 6 in Bnu’s documentation

2.2.9 Load Instructions

31

LDA LoaD Accumulator from memory

Function
Load the accumulator with the data located at the effective address specified

by the operand.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Immediate LDA #nn 0xA9 nn 2 2
Zero Page LDA ZZ 0xA5 ZZ 2 4a

Zero Page,X LDA ZZ,X 0xB5 ZZ 2 4
Absolute LDA hhll 0xAD ll hh 3 5b

Absolute,X LDA hhll,X 0xBD ll hh 3 5b

Absolute,Y LDA hhll,Y 0xB9 ll hh 3 5b

Indirect LDA (ZZ) 0xB2 ZZ 2 7
(Indirect,X) LDA (Oper,X) 0xA1 ZZ 2 7c

(Indirect),Y LDA (Oper),Y 0xB1 ZZ 2 7d

Status Flags
N V T B D I Z C
? - 0 - - - ? -

awas 3 in Bnu’s documentation
bwas 4 in Bnu’s documentation
cwas 6 in Bnu’s documentation
dwas 5 in Bnu’s documentation

LDX LoaD index X with memory

Function
Load the X register with the data located at the effective address specified by

the operand.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Immediate LDX #nn 0xA2 nn 2 2
Zero Page LDX ZZ 0xA6 ZZ 2 4a

Zero Page,Y LDX ZZ,Y 0xB6 ZZ 2 4
Absolute LDX hhll 0xAE ll hh 3 5b

Absolute,Y LDX hhll,Y 0xBE ll hh 3 5c

Status Flags
N V T B D I Z C
? - 0 - - - ? -

awas 3 in Bnu’s documentation
bwas 4 in Bnu’s documentation
cwas 4 in Bnu’s documentation, unless a page boundary was crossed, in which case it was 5

32

LDY LoaD index Y with memory

Function
Load the Y register with the data located at the effective address specified by

the operand.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Immediate LDX #nn 0xA0 nn 2 2
Zero Page LDX ZZ 0xA4 ZZ 2 4a

Zero Page,X LDX ZZ,X 0xB4 ZZ 2 4
Absolute LDX hhll 0xAC ll hh 3 5b

Absolute,X LDX hhll,X 0xBC ll hh 3 5c

Status Flags
N V T B D I Z C
? - 0 - - - ? -

awas 3 in Bnu’s documentation
bwas 4 in Bnu’s documentation
cwas 4 in Bnu’s documentation, unless a page boundary was crossed, in which case it was 5

LSR Logical Shift Right

Function
Logical shift the contents of the location specified by the operand right one bit.

That is, bit zero takes on the value originally found in bit one, bit one takes the
value originally in bit two, and so on; bit 7 is cleared; bit 0 is transferred into the
carry flag. The arithmetic result of the operation is an unsigned division by two.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Accumulator LSR A 0x4A 1 2
Zero Page LSR ZZ 0x46 ZZ 2 6a

Zero Page,X LSR ZZ,X 0x56 ZZ 2 6
Absolute LSR hhll 0x4E ll hh 3 7b

Absolute,X LSR hhll,X 0x5E ll hh 3 7

Status Flags
N V T B D I Z C
0 - 0 - - - ? ?

awas 5 in Bnu’s documentation
bwas 6 in Bnu’s documentation

33

NOP No OPeration

Function
NOP performs no action, and is often used for timing loops or temporarily

removing certain instructions. A NOP instruction consumes two cycles.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied NOP 0xEA 1 2

Status Flags
N V T B D I Z C
- - 0 - - - - -

ORA OR memory with Accumulator

Function
Bitwise logical OR the data located at the effective address specified by the

operand with the contents of the accumulator. Each bit in the accumulator is
ORed with the corresponding bit in memory, with the result being stored in the
respective accumulator bit.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Immediate ORA #nn 0x09 nn 2 2
Zero Page ORA ZZ 0x05 ZZ 2 4 a

Zero Page,X ORA ZZ,X 0x15 ZZ 2 4
Absolute ORA hhll 0x0D ll hh 3 4b

Absolute,X ORA hhll,X 0x1D ll hh 3 5c

Absolute,Y ORA hhll,Y 0x19 ll hh 3 5c

Indirect ORA (ZZ) 0x12 ZZ 2 7
(Indirect,X) ORA (ZZ,X) 0x01 ZZ 2 7d

(Indirect),Y ORA (ZZ),Y 0x11 ZZ 2 7e

Status Flags
N V T B D I Z C
? - 0 - - - ? -

awas 3 in Bnu’s documentation
bwas 4 in Bnu’s documentation
cwas 4 in Bnu’s documentation, unless a page boundary was crossed, in which case the value

was 5
dwas 6 in Bnu’s documentation
ewas 5 in Bnu’s documentation

2.2.10 Push and Pull Instructions

34

PHA PusH Accumulator on stack

Function
Pushes the value in the accumulator onto the stack.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied PHA 0x48 1 3

Status Flags
N V T B D I Z C
- - 0 - - - - -

PHP PusH Processor Status on stack

Function
Push the process status register P onto the stack.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied PHP 0x08 1 3

Status Flags
N V T B D I Z C
- - 0 - - - - -

PHX PusH X register onto stack

Function
Push the X register onto the stack.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied PHX 0xDA 1 3

Status Flags
N V T B D I Z C
- - 0 - - - - -

35

PHY PusH Y register onto stack

Function
Push the Y register onto the stack.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied PHY 0x5A 1 3

Status Flags
N V T B D I Z C
? - 0 - - - - -

PLA PuLl Accumulator from stack

Function
Pull the value on the top of the stack into the accumulator. The previous

contents of the accumulator are destroyed.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied PLA 0x68 1 4

Status Flags
N V T B D I Z C
? - 0 - - - ? -

PLP PuLl Processor Status from stack

Function
Pull the value on the top of the stack into the processor status register P. The

previous contents of the status register are destroyed.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied PLP 0x28 1 4

Status Flags
N V T B D I Z C
? ? ? ? ? ? ? ?

36

PLX PuLl X register from stack

Function
Pull the value on the top of the stack into the X register. The previous contents

of the X register are destroyed.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied PLX 0xFA 1 4

Status Flags
N V T B D I Z C
- - 0 - - - - -

PLY PuLl Y register from stack

Function
Pull the value on the top of the stack into the Y register. The previous contents

of the Y register are destroyed.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied PLY 0x7A 1 4

Status Flags
N V T B D I Z C
- - 0 - - - - -

ROL ROtate one bit Left (memory or accumulator)

Function
Rotate the contents of the location specified by the operand left one bit. That

is, bit one takes on the value originally found in bit zero, bit two takes the value
originally in bit one, and so on; bit zero takes on the value in the carry flag; bit
seven is transferred into the carry.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Accumulator ROL A 0x2A 1 2
Zero Page ROL ZZ 0x26 ZZ 2 6a

Zero Page,X ROL ZZ,X 0x36 ZZ 2 6
Absolute ROL hhll 0x2E ll hh 3 7b

Absolute,X ROL hhll,X 0x3E ll hh 3 7

Status Flags
N V T B D I Z C
? - 0 - - - ? ?

awas 5 in Bnu’s documentation
bwas 6 in Bnu’s documentation

37

ROR ROtate one bit Right (memory or accumulator)

Function
Rotate the contents of the location specified by the operand right one bit. That

is, bit zero takes on the value originally found in bit one, bit one takes the value
originally in bit two, and so on; bit seven takes on the value in the carry flag; bit
zero is transferred into the carry.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Accumulator ROR A 0x6A 1 2
Zero Page ROR ZZ 0x66 ZZ 2 6a

Zero Page,X ROR ZZ,X 0x76 ZZ 2 6
Absolute ROR hhll 0x6E ll hh 3 7b

Absolute,X ROR hhll,X 0x7E ll hh 3 7

Status Flags
N V T B D I Z C
? - 0 - - - ? ?

awas 5 in Bnu’s documentation
bwas 6 in Bnu’s documentation

2.2.11 Return Instructions

RTI ReTurn from Interrupt

Function
Pull the status register and the program counter from the stack in order. Nor-

mally used to return from an interrupt call (such as BRK), this instruction can also
be used to pull the status register P, and the program counter low and high bytes
from the stack into the P and program counter registers.

There is some confusion about the Hex Value for the instruction when it is in
Absolute mode. Bnu’s documentation says 0x40 is EOR in the absolute varient,
and 0x4D is the RTI instruction in implied mode. Jens Restemeier’s instructions
say the opposite: 0x4D is the EOR absolute varient, and 0x40 is the RTI instruction
implied varient.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied RTI 0x4D 1 7a

Status Flags
N V T B D I Z C
? ? ? ? ? ? ? ?

awas 6 in Bnu’s documentation

38

RTS Return from subroutine

Function
Pull the program counter from the stack, incrementing the 16-bit value by one

before loading the program counter with it. The low byte of the program counter
is pulled from the stack first, followed by the high byte.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied RTS 0x60 1 7a

Status Flags
N V T B D I Z C
- - 0 - - - - -

awas 6 in Bnu’s documentation

2.2.12 Swap Instructions

SAX Swap Accumulator and X register

Function
The values of the accumulator and the X Register are swapped.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied SAX 0x22 1 3

Status Flags
N V T B D I Z C
- - 0 - - - - -

SAY Swap Accumulator and Y register

Function
The values of the accumulator and the Y Register are swapped.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied SAY 0x42 1 3

Status Flags
N V T B D I Z C
- - 0 - - - - -

39

SBC Swap Subtract from accumulator (with borrow)

Function
Subtract the data located at the effective address specified by the operand

from the contents of the accumulator. Subtract one more from the result if the
carry flag is set, and store the final result in the accumulator. This opcode takes
one extra cycle if the decimal mode flag D is set.

Accumulator - Memory - Carry = Result (Stored in Accumulator)

John Robinson mentions:

ADC and SBC have decimal versions when the Decimal flag is set.
This operates on the idea that the numbers are BCD numbers. This
also affects the way flags are set. One flag isn’t set in the BCD way, and
then they set some flags only when the result is a normal BCD number
or something.

[Robinson, 2005], edited by the author

The decimal mode versions of ADC and SBC do not change the state of the
overflow flag.[MacDonald, 2002]

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Immediate SBC #nn 0xE9 nn 2 2
Zero Page SBC ZZ 0xE5 ZZ 2 4a

Zero Page,X SBC ZZ,X 0xF5 ZZ 2 4
Absolute SBC hhll 0xED ll hh 3 5b

Absolute,X SBC hhll,X 0xFD ll hh 3 5c

Absolute,Y SBC hhll,Y 0xF9 ll hh 3 5c

Indirect SBC (ZZ) 0xF2 ZZ 2 7
(Indirect,X) SBC (ZZ,X) 0xE1 ZZ 2 7d

(Indirect),Y SBC (ZZ),Y 0xF1 ZZ 2 7e

Status Flags
N V T B D I Z C
? ? 0 - - - ? ?

awas 3 in Bnu’s documentation
bwas 4 in Bnu’s documentation
cwas 4 in Bnu’s documentation, unless a page boundary was crossed where it was 5
dwas 6 in Bnu’s documentation
ewas 5 in Bnu’s documentation

2.2.13 Set Instructions

40

SEC Set Carry Flag

Function
The carry flag C in the status register is set to 1.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied SEC 0x38 1 2

Status Flags
N V T B D I Z C
- - 0 - - - - 1

SED Set Decimal Mode Flag

Function
The decimal mode flag D in the status register is set to 1. This enables BCD

arithmetic.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied SED 0xF8 1 2

Status Flags
N V T B D I Z C
- - 0 - 1 - - -

SEI Set interrupt disable flag

Function
The interrupt disable flag I in the status register is set to 1. This disables

hardware interrupt processing.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied SEI 0x78 1 2

Status Flags
N V T B D I Z C
- - 0 - - 1 - -

41

SET Set T flag

Function
The T flag in the status register is set to 1. The T flag is called the ”Memory

Operation Flag;”, when this flag is set all the instructions that normally use
the A register act differently, I don’t know exactly if all the instructions are
affected but I’m sure for AND, EOR, OR & ADC. In place of using the A register
the instruction use the memory location in ZP pointed by the X register, so for
example if you use SET followed by ADC #10, the CPU will do ZP[X] = ZP[X] + 10.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied SET 0xF4 1 2

Status Flags
N V T B D I Z C
- - 1 - - - - -

2.2.14 Store HuC6270 functions (STi)

ST0, ST1, ST2 write immediate data directly to the VDC (at physical addresses 1FE000−1FE003),
the address is not translated through the CPUs memory mapping hardware.[MacDonald, 2002]

ST0 Store HuC6270 No. 0

Function
The immediate argument is stored in the HuC6270’s address register. This

command is equivalent to storing the immediate argument in $1FE000. The
HuC6270 “No. 0” register is also known as the HuC6270 Address/Status Register;
more information is available in the HuC6270 summary. According to the Develo
Book , this operation sets /CE7, A1, and A0 to logical LOW.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied ST0 #nn 0x03 nn 2 4

Status Flags
N V T B D I Z C
- - 0 - - - - -

42

ST1 Store HuC6270 No. 1

Function
The immediate argument is stored in the HuC6270’s low data register. This

command is equivalent to storing the immediate argument in $1FE002. The
HuC6270 “No. 1” register is also known as the HuC6270 Low Data Register; more
information is available in the HuC6270 summary. According to the Develo Book
, this operation sets /CE7 and A0 to logical LOW, while setting A1 to logical HIGH.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied ST1 #nn 0x13 nn 2 4

Status Flags
N V T B D I Z C
- - 0 - - - - -

ST2 Store HuC6270 No. 2

Function
The immediate argument is stored in the HuC6270’s high data register. This

command is equivalent to storing the immediate argument in $1FE003. The
HuC6270 “No. 2” register is also known as the HuC6270 High Data Register; more
information is available in the HuC6270 summary. According to the Develo Book
, this operation sets /CE7 to logical LOW, while setting A0 and A1 to logical HIGH.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied ST2 #nn 0x23 nn 2 4

Status Flags
N V T B D I Z C
- - 0 - - - - -

43

SMBi Set Memory Bit i

Function
Set the specified bit in the zero page memory location specified in the operand.

The bit to clear is specified by a number concatenated to the end of the mnemonic,
resulting in 8 distinct Opcodes.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Zero page SMB0 ZZ 0x87 ZZ 2 7
Zero page SMB1 ZZ 0x97 ZZ 2 7
Zero page SMB2 ZZ 0xA7 ZZ 2 7
Zero page SMB3 ZZ 0xB7 ZZ 2 7
Zero page SMB4 ZZ 0xC7 ZZ 2 7
Zero page SMB5 ZZ 0xD7 ZZ 2 7
Zero page SMB6 ZZ 0xE7 ZZ 2 7
Zero page SMB7 ZZ 0xF7 ZZ 2 7

Status Flags
N V T B D I Z C
- - 0 - - - - -

STA STore Accumulator in memory

Function
Stores the value in the accumulator to the effective address specified by the

operand.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Zero Page STA ZZ 0x85 ZZ 2 4a

Zero Page,X STA ZZ,X 0x95 ZZ 2 4
Absolute STA hhll 0x8D ll hh 3 5b

Absolute,X STA hhll,X 0x9D ll hh 3 5
Absolute,Y STA hhll,Y 0x99 ll hh 3 5
Indirect STA (ZZ) 0x92 ZZ 2 7c

(Indirect,X) STA (ZZ,X) 0x81 ZZ 2 7c

(Indirect),Y STA (ZZ),Y 0x91 ZZ 2 7c

Status Flags
N V T B D I Z C
- - 0 - - - - -

awas 3 in Bnu’s documentation
bwas 4 in Bnu’s documentation
cwas 6 in Bnu’s documentation

44

STX STore X register in memory

Function
Store the value in the X register to the effective address specified by the operand.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Zero Page STX ZZ 0x86 ZZ 2 4a

Zero Page,Y STX ZZ,Y 0x96 ZZ 2 4
Absolute STX hh ll 0x8E ll hh 3 5b

Status Flags
N V T B D I Z C
- - 0 - - - - -

awas 3 in Bnu’s documentation
bwas 4 in Bnu’s documentation

STY STore Y register in memory

Function
Store the value in the Y register to the effective address specified by the operand.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Zero Page STY ZZ 0x84 ZZ 2 4a

Zero Page,Y STY ZZ,Y 0x94 ZZ 2 4
Absolute STY hh ll 0x8C ll hh 3 5b

Status Flags
N V T B D I Z C
- - 0 - - - - -

awas 3 in Bnu’s documentation
bwas 4 in Bnu’s documentation

45

STZ STore Zero in memory

Function
Store the value 0x00 to the effective address specified by the operand. This is

useful for initialising memory.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Zero Page STZ ZZ 0x64 ZZ 2 4
Zero Page, X STZ ZZ, X 0x74 ZZ 2 4
Absolute STZ hhll 0x9C ll hh 3 5
Absolute, X STZ hhll, X 0x9E ll hh 3 5

Status Flags
N V T B D I Z C
- - 0 - - - - -

SXY Swap X and Y registers

Function
Swaps the values stored in the X and Y registers.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied SXY 0x02 1 3

Status Flags
N V T B D I Z C
- - 0 - - - - -

2.2.15 Block Transfer Functions

- Block transfer instructions push Y, A, X to the stack in that order, and then pop X, A, Y from
the stack in that order when finished.[MacDonald, 2002]

- For the alternating block transfer instructions (TAI and TIA), they alternate the source or des-
tination address by adding and then subtracting one; not by inverting bit 0 of the address.[MacDonald, 2002]

- The length parameter to a block transfer instruction specifies the number of bytes to transfer.
For example, 0010willtransfer16bytes, and0000 will transfer 64K bytes, not zero.[MacDonald, 2002]

- Block transfer instructions cannot be interrupted. If an interrupt is supposed to occur, it
occurs once the instruction finishes.[MacDonald, 2002]

- When using any block transfer instruction to read addresses 0800through1400 in the I/O page,
the value zero is always returned for every address, regardless of the CPU speed. (So you can’t read
the joystick port, timer, or IRQ registers) The I/O buffer is not changed either.[MacDonald, 2002]

Writing to the same range of addresses using the block transfer instructions will work, and the
I/O buffer will be modified.[MacDonald, 2002]

46

TAI Transfer Alternate Increment

Function
Execute a memory move where the source address alternates between two

addresses, and the destination address increments with each loop cycle. This is an
extremely powerful instruction, mainly used for transferring data from the special
video memory (e.g., backgrounds, etc.) to the main memory.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Block Mode TAI SHSL DHDL LHLL 0xF3 SL SH DL DH LL LH 7 17 + 6x

Status Flags
N V T B D I Z C
- - 0 - - - - -

TAM Transfer Accumulator to MPRi

Function
Loads Memory Mapping Register i with the value in the accumulator. More

about the MPR registers can be found in the Memory Mapping summary. It is
possible to load more than one MPR at a time by setting more than one bit in the
immediate argument to TAM.

[In my understanding, if you set bits 0 and 3 high and the remainder low, upon
execution these Memory Mapping Registers 0 and 3 would get set with the value
in the accumulator. Since the number of cycles does not depend on how many are
being set, its very likely that they are set in parallel by the hardware, perhaps by
using expensive associative memory.]

John Robinson mentions:

TAMI can transfer one value into multiple Memory registers. so if
you do TAMI 30, #$FF it will transfer 30 into all of them (and then
probably crash unless 30 is your working code page ;)) but #$C0 would
set only the pages 6 and 7.

[Robinson, 2005]

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied TAM #nn 0x53 nn 2 5

Status Flags
N V T B D I Z C
- - 0 - - - - -

47

TAX Transfer Accumulator to X register

Function
Transfer the value in the accumulator to register X.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied TAX 0xAA 1 2

Status Flags
N V T B D I Z C
? - 0 - - - ? -

TAY Transfer Accumulator to Y register

Function
Transfer the value in the accumulator to register Y.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied TAY 0xA8 1 2

Status Flags
N V T B D I Z C
? - 0 - - - ? -

TDD Transfer Decrement Decrement

Function
Execute a memory move where the source and destination addresses decrement

with each loop cycle. This is an extremely powerful instruction, mainly used for
copying and moving data around in main memory.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Block Move TDD SHSL,DHDL, LHLL 0xC3 SL SH DL DH LL LH 7 17 + 6x

Status Flags
N V T B D I Z C
- - 0 - - - - -

48

TIA Transfer Increment Alternate

Function
Execute a memory move where the source address increments, and the des-

tination address alternates between two addresses with each loop cycle. This is
an extremely powerful instruction, mainly used for transferring data to the special
video memory (e.g., backgrounds, etc.) from the main memory.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Block Move TIA SHSL,DHDL, LHLL 0xE3 SL SH DL DH LL LH 7 17 + 6x

Status Flags
N V T B D I Z C
- - 0 - - - - -

TIN Transfer Increment None

Function
Execute a memory move where the source address increments with each loop

cycle. This is an extremely powerful instruction, mainly used for transferring data
from the special video memory (e.g., backgrounds, etc.) to the main memory.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Block Move TIN SHSL,DHDL, LHLL 0xD3 SL SH DL DH LL LH 7 17 + 6x

Status Flags
N V T B D I Z C
- - 0 - - - - -

TII Transfer Increment Increment

Function
Execute a memory move where the source address increments with each loop

cycle. This is an extremely powerful instruction, mainly used for transferring data
from the special video memory (e.g., backgrounds, etc.) to the main memory.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Block Move TII SHSL,DHDL, LHLL 0x73 SL SH DL DH LL LH 7 17 + 6x

Status Flags
N V T B D I Z C
- - 0 - - - - -

49

TMAi Transfer MPRi to Accumulator

Function
Transfers the value in Memory Mapping Register i to the accumulator. More

information about the MPRs can be found on the Memory Mapping summary. Only
one bit in the immediate argument can be set to 1.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied TMA #nn 0x43 #nn 2 4

Status Flags
N V T B D I Z C
- - 0 - - - - -

TRB Test and Reset Memory Bits Against Accumulator

Function
Logically AND together the complement of the value in the accumulator with

the data at the effective address specified by the operand. Store the result at the
memory location. This clears each bit for which the corresponding accumulator
bit is set, making it an ideal opcode for masking data. N and V and Z are set as
in the BIT opcode instruction. These flags are set based on the ANDing of the
uncomplemented accumulator value with the memory value.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Zero Page TRB ZZ 0x14 ZZ 2 6
Absolute TRB hhll 0x1C ll hh 3 7

Status Flags
N V T B D I Z C
M7 M6 0 - - - ? -

50

TSB Test and Set Memory Bits Against Accumulator

Function
Logically OR together the value in the accumulator with the data at the effective

address specified by the operand. Store the result at the memory location. This
sets each bit for which the corresponding accumulator bit is set, making it an ideal
opcode for masking data. N and V and Z are set as in the BIT opcode instruction.
These flags are set based on the ANDing of the accumulator value with the memory
value.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Zero Page TSB ZZ 0x04 ZZ 2 6
Absolute TSB hhll 0x0C ll hh 3 7

Status Flags
N V T B D I Z C
M7 M6 0 - - - ? -

TST Test and Reset Memory Bits

Function
Logically AND together the immediate operand with the data at the effective

address specified by the operand. This sets each bit for which the corresponding
immediate argument bit is set, making it an ideal opcode for masking data. N and
V and Z are set as in the BIT opcode instruction.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Imm. Zero Page TST #nn, ZZ 0x83 nn ZZ 3 7
Imm. Zero Page, X TST #nn, ZZ, X 0xA3 nn ZZ 3 7
Immediate Absolute TST #nn, hhll 0x93 nn ll hh 4 8
Imm. Absolute, X TST #nn, hhll, X 0xB3 nn ll hh 4 8

Status Flags
N V T B D I Z C
M7 M6 0 - - - ? -

51

TSX Transfer stack pointer to X register

Function
Transfer the value in the stack pointer S to the X register. The value of the

stack pointer is not changed.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied TSX 0xBA 1 2

Status Flags
N V T B D I Z C
? - 0 - - - ? -

TXA Transfer X register to accumulator

Function
Transfer the value in the X register to the accumulator. The value of the X

register is not changed.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied TXA 0x8A 1 2

Status Flags
N V T B D I Z C
? - 0 - - - ? -

TXS Transfer X register to Stack Pointer

Function
Transfer the value in the X register to the stack pointer. The value of the X

register is not changed.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied TXS 0x9A 1 2

Status Flags
N V T B D I Z C
- - 0 - - - - -

52

TYA Transfer Y register to accumulator

Function
Transfer the value in the Y register to the accumulator. The value of the Y

register is not changed.

Addressing Modes & OpCodes

Addressing Mode Syntax Opcode bytes cycles
Implied TYA 0x98 1 2

Status Flags
N V T B D I Z C
? - 0 - - - ? -

53

2.2.16 Addressing Modes

Instructions need operands to work on. There are various ways of indicating where the processor
is to get these operands. The different methods used to do this are called addressing modes. The
6502 offers 11 modes, as described below.

Immediate In this mode the operand’s value is given in the instruction itself. In assembly
language this is indicated by “#” before the operand. eg. LDA #$0A - means “load the
accumulator with the hex value 0x0A” In machine code different modes are indicated by
different codes. So LDA would be translated into different codes depending on the addressing
mode. In this mode, it is: $A9 $0A[Bnu, 1999]

Absolute and Zero-page Absolute In these modes the operands address is given.
eg. LDA 0x31F6 - (assembler)
0xAD 0x31F6 - (machine code)
If the address is on zero page - i.e. any address where the high byte is 00 - only 1 byte is
needed for the address. The processor automatically fills the 00 high byte. eg. LDA 0xF4
0xA5 0xF4 Note the different instruction codes for the different modes. Note also that for
2 byte addresses, the low byte is store first, eg. LDA 0x31F6 is stored as three bytes in
memory, 0xAD 0xF6 0x31. Zero-page absolute is usually just called zero-page.[Bnu, 1999]

Implied No operand addresses are required for this mode. They are implied by the instruction.
eg. TAX - (transfer accumulator contents to X-register)[Bnu, 1999]

Accumulator In this mode the instruction operates on data in the accumulator, so no operands
are needed. eg. LSR - logical bit shift right[Bnu, 1999]

Indexed and Zero-page Indexed In these modes the address given is added to the value in
either the X or Y index register to give the actual address of the operand. eg. LDA $31F6,
Y[Bnu, 1999]

Note that the different operation codes determine the index register used. In the zero-
page version, you should note that the X and Y registers are not interchangeable. Most
instructions which can be used with zero-page indexing do so with X only.[Bnu, 1999]

Indirect This mode applies only to the JMP instruction - JuMP to new location. It is indicated
by parenthesis around the operand. The operand is the address of the bytes whose value is
the new location.[Bnu, 1999]

Pre-indexed indirect In this mode a zer0-page address is added to the contents of the X-
register to give the address of the bytes holding the address of the operand. The indirection
is indicated by parenthesis in assembly language.

Note a) When adding the 1-byte address and the X-register, wrap around addition is used -
i.e. the sum is always a zero-page address. eg. FF + 2 = 0001 not 0101 as you might expect.
DON’T FORGET THIS WHEN EMULATING THIS MODE. b) Only the X register is used
in this mode.[Bnu, 1999]

Post-indexed indirect In this mode the contents of a zero-page address (and the following
byte) give the indirect addressm which is added to the contents of the Y-register to yield
the actual address of the operand. Again, inassembly language, the instruction is indicated
by parenthesis.
eg. LDA ($4C), Y
Note that the parenthesis are only around the 2nd byte of the instruction since it is the part
that does the indirection.

Note: only the Y-register is used in this mode.[Bnu, 1999]

54

Relative This mode is used with Branch-on-Condition instructions. It is probably the mode
you will use most often. A 1 byte value is added to the program counter, and the program
continues execution from that address. The 1 byte number is treated as a signed number -
i.e. if bit 7 is 1, the number given byt bits 0-6 is negative; if bit 7 is 0, the number is positive.
This enables a branch displacement of up to 127 bytes in either direction.[Bnu, 1999]

Notes: a) The program counter points to the start of the instruction after the branch
instruction before the branch displacement is added. Remember to take this into account
when calculating displacements. b) Branch-on-condition instructions work by checking the
relevant status bits in the status register. Make sure that they have been set or unset as you
want them. This is often done using a CMP instruction. c) If you find you need to branch
further than 127 bytes, use the opposite branch-on-condition and a JMP.[Bnu, 1999]

55

3 Emulator Design

This latter part of this document is a treatises on the design, implementation, and testing of a
complete PCE emulator.

emulate: Computer Science. To imitate the function of (another system), as by modifications to
hardware or software that allow the imitating system to accept the same data, execute the
same programs, and achieve the same results as the imitated system.

A first concern for our emulations design, is the “completness” of the emulation. I’m refering to
aspects of PCE that can be ignored, or re-interpreted without a regular PCE software user noticing
any real difference between a real PCE and the emulated system; For example, most input to an
emulator is reinterpreted into a format the emulated system would understand. Few emulators
require you to add obscure hardware devices to plug in ancient gamepads. There will always
be some differences between an emulator and the real system, these differences are usually to
make the emulator more convieniant; the question becomes how much deviation will the emulator
employ.

There are two extremes: the first being that the emulator remain as true to the system as
possible, only deviating were absolutely nessessary (like reading rom data from a file, and keyboard
events, and mapping the system output to a drawing space or speakers on the host system).
Internal operations within the system should occur exactly as they would in a real PCE, by using
phony registers, and emulating the PCE memory within the application heap. The other extreme
is to only worry about the output being appropriate. This emulator doesn’t care what happens
in a real PCE, so long as it can use the PCE instructions to build a comparible algorithm for the
host system.

Of the two cases, the situation where the system is emulated instruction by instruction is
by far the simpler and more common case. Its benefits are that it is both simple and much
easier. The downsides are that the emulator structure is fairly riged, making optimization more
difficult (although, when your emulating a system that runs at 4 mHz, optimization isn’t really a
requirement).

3.1 Programming Language

The language of implementation is a critical choice to the success of an emulator. The choice
of emulator will effect the speed, reliability, extendability, project size and, most importantly,
simplicity of the emulator. Although many languages can be used to implement the emulator,
I’m certain C or in some cases C++ are the best languages for an emulator and the reason these
langauges are superior is pointer manipulation.

That said, there are some downsides to C and C++, the lack of garbage collection being a big
one; Automatic garbage collection is extremely nice and reduces development time substantially.
Another problem is portability, although C and C++ compilers are ubiquitous a recompilation
will be needed for each platform the emulator is ported too.

The downsides are easily outweighed by the upsides. A C or C++ program generates an
executable and requires no additional software on the host machine to run. There is a large body
of supporting libraries and software for C and C++ particularly for multimedia applications. C
and C++ are sufficiently low-level to allow us to convieniently map rom instructions to various
functions.

Those are my reasons for choosing C or C++, there are also factors that make alternative
languages unsuitable. Java for instance, is a (imo) awesomely cool language with a large and
growing body of libraries. The advantages of writing an emulator in Java are great: garbage
collection, portability, easy access to testing frameworks, standard GUI API’s, etc. However Java
does not let us operate at a low enough level; function pointers and direct memory access, features
which Java does not excel at, will make our lives a lot easier when emulating the PCE CPU.

56

Other languages like Prolog (a logical language) or Haskel (a functional language) allow for
very high level descriptions of the problem. Unfortunately, these languages, like many others,
are entirely unsuitable for the task of emulation. Often they simply don’t have the libraries for
multimedia, or are not really intended for tasks involving deadlines such as emulation.

Still other imperitive languages, like Perl, Lisp, or Python, fall flat once again because of the
absence of suitable multimedia libraries. Additionally, I don’t believe any of these languages offers
pointers2.

In conclusion, we have to take the good with the bad. Pointer manipulation is simply too good
to pass up, as are the wonderful multimedia API’s available to C and C++ programs (DirectX,
openGL, SDL, and Allegro to name a few). The cost of this, is the convenience that comes with
the higher level languages.

3.2 Programming Philosophy

In designing a program, any program even an emulator, it is most desirable to keep the system
extremely simple. Eric Raymond’s book “The Art of Unix Programming”[Raymond, 2004] has 17
excellent points that are copied here.

1. Rule of Modularity: Write simple parts connected by clean interfaces.

2. Rule of Clarity: Clarity is better than cleverness.

3. Rule of Composition: Design programs to be connected to other programs.

4. Rule of Separation: Separate polic from mechanism; separate interfaces from engines.

5. Rule of Simplicity: Design for simplicity; add complexity only where you must.

6. Rule of Parsimony: Write a big program only when it is clear by demonstration that nothing
else will do.

7. Rule of Transparency: Design for visibility to make inspection and debugging easier.

8. Rule of Robustness: Robustness is the child of transparency and simplicity.

9. Rule of Representation: Fold knowledge into data so program logic can be stuiped and
robust.

10. Rule of Least Suprise: In interface design, always do the least suprising thing.

11. Rule of Silence: When a program has nothing suprising to say, it should say nothing.

12. Rule of Repair: When you must fail, fail noisily and as soon as possible.

13. Rule of Economy: Programmer time is expensive; conserve it in preference to machine time.

14. Rule of Generation: Avoid hand-hacking; write programs to write programs when you can.

15. Rule of Optimization: Prototype before polishing. Get it working before you optimize it.

16. Rule of Diversity: Distrust all claims for the “one true way”.

17. Rule of Extensibility: Design for the furture, because it will be here sooner than you think.
2If I’m wrong in either of these regards, please contact me via email to wagwilk@telusplanet.net

57

Of these rules, 3, 4, 5, 13, and 14 are the ones I’m most concerned with. I’d be very happy if
I could design my emulator such that it could easily be connected to two seperate interfaces: A
debuging one, where the emulator variables (such as memory, sprites, etc) are all viewable, and
a playing interface, where there is only the emulators drawing window and output sound. By
containing the emulator code away from the interface, like Rule 4, I can modify the front end
without introducing bugs into the backend; different output interfaces (one built on SDL, another
built on openGL) can be written and also be very simple.

Rule 13 is one of my major goals: I don’t want to spend a lot of time writing the emulator.
I want it a well designed emulator that functions appropriately, but I don’t want to develop it
through hours and hours of debugging and refactoring. I want to do it well the first time.

Rule 14 is absolutely brilliant and it’s applied in John Robinson’s [Robinson, 2005] emulator
to good effect. I’ll certainly be looking into areas where I can create code-generating tools.

In summary I think a good design is one in which the emulator (if run with the -v flag) outputs
the command its executing and the results in simple table format so a developer can always find
where the program was when it crashed. Most of the emulator’s code will be generated (since
its mostly a large switch statement anyway)3. For communicating data, the emulator will use
unix Sockets; a socket for video data, one socket for audio data, another for mentioning what
memory value has changed to what, an input socket for controls, etc etc. The number of these
sockets created (and hence the amount of data that the emulator exports over sockets) will be
controlled during compilation. If the DEBUG flag is specified, the entire product will be compiled
to support a debugging session, with sockets outputting palette information, memory information,
sprite information and more.

Although this adds complexity overall, it reduces each components complexity. The emulator
doesn’t draw anything, it doesn’t sound anything, it doesn’t even check input. This gives me
additional flexibility for testing, and allows future extendability (perhaps an intermediate program
is put between the video reader/screen drawer and the emulator. This program could copy the data
across the network to other machines, so the emulator can be watched from numerous terminals.
Combine this with an input reader that reads keyboard and network events, and suddenly the
emulator is multiplayer! Not a single line of code has been added to the actual emulator, so its
bug free!). I’ll need to determine whether or not unix sockets are the way to go, they may not be
portable, or an easier method of communication between the programs might exist.

3.3 Software Components

These are some of the components that will interact with the emulator to give it function. Com-
ponents should communicate with almost self-documenting messages, that make it very easy for
new tools to be built and debugged. For example, rather than the emulator sending message
0x0A, then the number of parameters 0x02 and then 0x45, 0xFF , the message should be simple
and clear: ”MEMCHANGE AT 0x45 to 0xFF” – Wouldn’t that be much easier for debugging?

3.3.1 Debugger Components

These components are designed to capture data and display it in a useable form. When combined
with the emulator running in stepwise fashion, these software components will create a full featured
debugging environment.

Register Viewer: This component should create a graphical window that shows the contents of
each register. It should also interpret the values if they’re bitflags.

Memory viewer: This component should show all the contents of the memory for the entire
PCE. Ideally it should communicate what codepage the memory belongs to, or what its role
is.

3Perhaps lex can be used to create this large table.

58

sprite viewer: This component should allow the user to view all the frames of all the sprites.

palette viewer: This component should show the user all of the palette information.

audio capture device: This component should be able to capture audio signals properly, even if
the emulator is working in stepwise fashion. It should be able to play back the audio, and
save it.

video frame capture device: This component should be able to capture video data and render
it appropriately. It should be able to save the data.

(Optional) Code Viewer: If there is some way to tell what code has been used to generate
the binary file being executed, a code viewer could easily be added. Breakpoints could be
supported easily as well.

(Optional) ASM Viewer: If there is some way to tell what file has been loaded, an viewer could
be written that converts that to ASM. Breakpoints could be supported easily as well.

3.3.2 Video Components

Video components should render the frames appropriately and render them in realtime.

3.3.3 Audio Components

Audio components should queue the audio samples for playback at the correct rate.

3.3.4 Input Components

Input components are programs written to gather input and feed it properly into the emulator.

input capture device: This compononent should gather input in realtime and send it to the
emulator.

input repeater device: This component should read input data from a file and send it to the
emulator. (useful for making tests).

Real Time Debuggers / Memory Checkers

1. Valgrind (http://valgrind.org/)

2. memfetch

3. CCured

Testing Frameworks

1. QTUnit

2. QCPPUnit

3. CPPUnit

4. CXXUnit

5. CUnit

6. CUT

7. Check

59

8. testify - test CLI responses

Profiler tools

1. C/C++ Program Perfometer.

Other

1. CMT++: Metrics testing framework (http://www.testwell.fi/cmtdesc.html)

2. CTC++: Test Coverage Analyzer for C/C++ (http://www.testwell.fi/ctcdesc.html)

3. BFBTester: Brute Force Binary Tester

4. PatternTesting (doesn’t work with C)

5. cxxchecker - C++ source-code style check (https://gna.org/projects/cxxchecker/)

6. SLOCCount - Source lines of code count (http://www.dwheeler.com/sloccount/)

7. cqual - Add constraints to variables, ensure they are met (http://www.cs.umd.edu/~jfoster/
cqual/)

8. ccide - Add nice decision tables to C code (http://www.ccide.com/)

60

4 Appendix

4.1 Changes

Changes in Version 0.2

• Copied information from Jens Restemeier’s documentation [Restemeier, 1997], to flesh out
the instruction set.

• Reorganized the tex files.

• Added some basic information on my own emulator design.

• Added instructions ordered by numeric value to the appendix.

4.2 Remaining To Do

• Fix notation for certain instructions

• Discuss code reuse

• Determine whether operations across a page boundary take more cycles.

• Determine which instruction 0x40 is and which instruction 0x4D is. There is confusion about
this (see the EOR and RTI instructions).

• Add content like a madman!

61

4.3 Ordered List of Instructions

0x00 BRK
0x01 ORA
0x02 SXY
0x03 ST0
0x04 TSB
0x05 ORA
0x06 ASL
0x08 PHP
0x09 ORA
0x0A ASL
0x0C TSB
0x0D ORA
0x0E ASL
0x0F BBR
0x10 BPL
0x11 ORA
0x12 ORA
0x13 ST1
0x14 TRB
0x15 ORA
0x16 ASL
0x18 CLC
0x19 ORA
0x1A INC
0x1C TRB
0x1D ORA
0x1E ASL
0x1F BBR
0x20 JSR
0x21 AND
0x22 SAX
0x23 ST2
0x24 BIT
0x25 AND
0x26 ROL
0x28 PLP
0x29 AND
0x2A ROL
0x2C BIT
0x2D AND
0x2E ROL
0x2F BBR
0x30 BMI
0x31 AND
0x32 AND
0x34 BIT

0x34 BIT
0x35 AND
0x36 ROL
0x38 SEC
0x39 AND
0x3A DEC
0x3D AND
0x3E ROL
0x3F BBR
0x40 EOR
0x41 EOR
0x42 SAY
0x43 TMA
0x44 BSR
0x45 EOR
0x46 LSR
0x48 PHA
0x49 EOR
0x4A LSR
0x4C JMP
0x4D RTI
0x4E LSR
0x4F BBR
0x50 BVC
0x51 EOR
0x52 EOR
0x53 TAM
0x54 CSL
0x55 EOR
0x56 LSR
0x58 CLI
0x59 EOR
0x5A PHY
0x5D EOR
0x5E LSR
0x5F BBR
0x60 RTS
0x61 ADC
0x62 CLA
0x64 STZ
0x65 ADC
0x66 ROR
0x68 PLA
0x69 ADC
0x6A ROR
0x6C JMP

0x6D ADC
0x6E ROR
0x6F BBR
0x70 BVS
0x71 ADC
0x72 ADC
0x73 TII
0x74 STZ
0x75 ADC
0x76 ROR
0x78 SEI
0x79 ADC
0x7A PLY
0x7C JMP
0x7D ADC
0x7E ROR
0x7F BBR
0x81 STA
0x82 CLX
0x83 TST
0x84 STY
0x85 STA
0x86 STX
0x87 SMB
0x88 DEY
0x89 BIT
0x8A TXA
0x8C STY
0x8D STA
0x8E STX
0x8F BBS
0x90 BCC
0x91 STA
0x92 STA
0x93 TST
0x94 STY
0x95 STA
0x96 STX
0x97 SMB
0x98 TYA
0x99 STA
0x9A TXS
0x9C STZ
0x9D STA
0x9E STZ
0x9F BBS

0xA0 LDX
0xA1 LDA
0xA2 LDX
0xA3 TST
0xA4 LDX
0xA5 LDA
0xA6 LDX
0xA7 SMB
0xA8 TAY
0xA9 LDA
0xAA TAX
0xAC LDX
0xAD LDA
0xAE LDX
0xAF BBS
0xB0 BCS
0xB1 LDA
0xB2 LDA
0xB3 TST
0xB4 LDX
0xB5 LDA
0xB6 LDX
0xB7 SMB
0xB8 CLV
0xB9 LDA
0xBA TSX
0xBC LDX
0xBD LDA
0xBE LDX
0xBF BBS
0xC0 CPY
0xC1 CMP
0xC2 CLY
0xC3 TDD
0xC4 CPY
0xC5 CMP
0xC6 DEC
0xC7 SMB
0xC8 INY
0xC9 CMP
0xCA DEX
0xCC CPY
0xCD CMP
0xCE DEC
0xCF BBS
0xD0 BNE

0xD1 CMP
0xD2 CMP
0xD3 TIN
0xD4 CSH
0xD5 CMP
0xD6 DEC
0xD7 SMB
0xD8 CLD
0xD9 CMP
0xDA PHX
0xDD CMP
0xDE DEC
0xDF BBS
0xE0 CPX
0xE1 SBC
0xE3 TIA
0xE4 CPX
0xE5 SBC
0xE6 INC
0xE7 SMB
0xE8 INX
0xE9 SBC
0xEA NOP
0xEC CPX
0xED SBC
0xEE INC
0xEF BBS
0xF0 BEQ
0xF1 SBC
0xF2 SBC
0xF3 TAI
0xF4 SET
0xF5 SBC
0xF6 INC
0xF7 SMB
0xF8 SED
0xF9 SBC
0xFA PLX
0xFD SBC
0xFE INC
0xFF BBS

62

Glossary

Bank A bank is synomous with a page. In order for a bank to be used it must be mapped to a
logical address within the TG16. Available Bank maps are shown in table 4, on page 6.

VDC Second video processor on the TG16

63

Index

accumulator, 3

HuC6280, 3

instruction, 10, 13–53
add, 13
and, 14
branch, 16–20, 22, 23
break, 21
compare, 26, 27
decrement, 28, 29
exclusive or, 29
increment, 30
jump, 31
list, 11, 62
load, 32, 33
nop, 34
or, 34
pull, 36, 37
push, 35, 36
return, 38, 39
set, 41, 42, 44
shift, 33, 37, 38
speed, 27, 28
store, 42–46
subtract, 40
swap, 39, 46
test, 50, 51
transfer, 46–50, 52, 53

interrupt, 38

register
accumulator, 13–15, 19, 23, 26, 29, 32,

34–40, 44, 48, 50–53
status, 3, 23–25, 35, 36, 41, 42
x, 3, 26, 28, 30, 32, 35, 37, 39, 45, 46,

48, 52
y, 3, 27, 29, 30, 33, 36, 37, 39, 45, 46, 48,

53

stack, 35–37, 52
subroutine, 39

64

References

[Bnu, 1999] Bnu (1999). 6502 microprocessor reference manual. http://www.zophar.net/
tech/files/6502.txt.

[David Michel, 2003] David Michel, C. M. (2003). Magickit pce hardware documentation. http:
//www.magicengine.com/mkit/.

[MacDonald, 2002] MacDonald, C. (2002). Turbografx-16 hardware notes. http://cgfm2.
emuviews.com/txt/pcetech.txt.

[Raymond, 2004] Raymond, E. S. (2004). The Art of Unix Programming. Addison-Wesley.

[Restemeier, 1997] Restemeier, J. C. (1997). Unofficial pc-engine reference. http://www.
classicgaming.com/epr/pc-engin/pcedoc_ps.zip.

[Robinson, 2005] Robinson, J. S. (2005). private communications.

[Zophar, 2004] Zophar (2004). 65c02 reference manual. http://www.zophar.net/tech/files/
6502ref.html.

65

